

Progression in calculation Key Stage 2 Workshop

Aims of the workshop

- Gain a better understanding of the progression in calculation from Year 3-6.
- Understand the methods used in school for addition, subtraction, multiplication and division.
- Be more confident to help children at home

Aims of the 2014 National Curriculum MATHS

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Strategies for calculation need to be represented by models and images to support, develop and secure understanding. This, in turn, builds fluency. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the methodology.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

What does this number sentence mean?

$$
5 \times 4=
$$

Represent this number sentence in words, pictures or with concrete materials (things!)

Represent it in more than one way!

Structures of Multiplication (Haylock and Cockburn 2008)

Children should experience problems with all the different multiplication structures in a range of practical and relevant contexts e.g. money and measurement

Repeated addition

So many lots (sets) of so many
How many (how much) altogether Per, each

Scaling

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

Commutative law

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

$\mathbf{a} \mathbf{x} \mathbf{b}$ and $\mathbf{b} \mathbf{x}$ a are equal

4×2 is the same as/equal to 2×4

	$2 \times 5=10$	$3 \times 6=18$	$4 \times 1=$	
$1 \times 5=5$	$2 \times 6=12$	$3 \times 7=21$	$4 \times 8=32$	
$1 \times 6=6$	$2 \times 7=14$	$3 \times 8=24$	$4 \times 9=36$	
$\times 7=7$	$2 \times 8=16$	$3 \times 9=27$		
$1 \times 8=8$	$2 \times 9=18$			
$\times 9=9$				

0

$6 \times 6=36$
$6 \times 7=42$
$6 \times 8=48$ $6 \times 9=54$

Multiplication

Multiplication - multiplication and division should be taught together- refer to structures of multiplication

Multiplication - multiplication and division should be taught together- refer to structures of multiplication

Pictorial and concrete progression slides

Grid method and Column method Page 10 and 11

Structures for Division (Haylock and Cockburn 2008)

Children should experience problems with the different division structures in a range of relevant contexts e.g. money and measurement

Equal-sharing

Sharing equally between How many (much) each?

Inverse of multiplication (Grouping)
So many lots (sets/groups) of so many Share equally in to groups of ...

Divide twelve into equal groups of four
 $=3$

Make 12

Overlay groups of four

Barney earns three times more than Fred. If Barney earns $£ 900$ how much does Fred earn?

Jo's journey to school is three times as long as Ella's. If Jo walks to school in 30 minutes how long does it take Ella?

Division - multiplication and division should be taught together- refer to structures of division

Division - multiplication and division should be taught together- refer to structures of division

Pictorial and concrete progression slides

Grouping, Arrays, Remainders and Short Division Page 12,13,14

